Foldax® Tria:
First in Human Implant of a Totally Synthetic Polymeric Aortic Valve

Steven J. Yakubov, MD FACC MSCAI
John H. McConnell Chair of Advanced Structural Heart Disease
System Chief, OhioHealth Structural Heart Disease
Medical Director, OhioHealth Research Institute
Riverside Methodist Hospital, OhioHealth
Columbus, Ohio
Foldax Tria Valve Technology

Material
- Specifically for heart valves
- Patented polymer
- Biocompatible/biostable
- No need for AC therapy

Design
- Leaflets, stent & polymer FEA engineered
- More durable than tissue
- 1-2 size larger EOA than tissue valves

Process
- Robotic manufacturing
Tria Valve Development

- **Surgical AVR**
 - Validate Tria technology
 - Material, design, process

- **Surgical MVR**
 - Designed to withstand mitral pressures
 - Address unmet durable mitral valve need

- **TAVR**
 - Better durability for low-risk pts
 - Lower profile

- **Meets all FDA testing requirements**
- **Initiated Aortic Early Feasibility Study (EFS)**
Development Testing

Chronic Sheep Calcification

Tria Valve

Pericardial Valve

Animal Pressure Gradients

- Foldax 23mm, n=8
- Edwards Perimount 25mm, n=2, Control

4.7mo.
Clinical Experience: Surgical Aortic EFS First-in-Human Patient #1

- **Patient #1**
 - Age: 68 yrs
 - Height: 69 in
 - Weight: 190 lbs
 - Med Hx: Hypertension, Hyperlipidemia, Asthma
 - NYHA: Class II

- Surgery: July 30, 2019
 - 21mm valve

- Beaumont Health

<table>
<thead>
<tr>
<th></th>
<th>Pre-op</th>
<th>Post-op (30 day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>65%</td>
<td>70%</td>
</tr>
<tr>
<td>Gradient</td>
<td>Mean 44mmHg Peak 74mmHg</td>
<td>Mean 19mmHg CO = 7l/m</td>
</tr>
<tr>
<td>Symptoms</td>
<td>SOB & DOE</td>
<td>Resolved</td>
</tr>
</tbody>
</table>
Clinical Experience: Surgical Aortic EFS Patient #2

• **Patient #2**
 - Age: 50 yrs
 - Height: 68 in
 - Weight: 212 lbs
 - Med Hx: Murmur, DOE, Tonsillectomy

• Surgery: Sept. 19, 2019
 - 23mm valve

• Riverside Methodist

<table>
<thead>
<tr>
<th></th>
<th>Pre-op</th>
<th>Post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>60-65%</td>
<td>70%</td>
</tr>
<tr>
<td>Gradient</td>
<td>Mean 45mmHg</td>
<td>Mean 10mmHg</td>
</tr>
<tr>
<td></td>
<td>Peak 79mmHg</td>
<td>CO = 9l/m</td>
</tr>
</tbody>
</table>
Clinical Experience: Surgical Aortic EFS Patient #2
Clinical Experience: Surgical Aortic EFS Patient #2

- Mean gradient = 10mmHg
Tria TAVR Development

• Same polymer as SAVR clinical valve
• FEA engineering optimizes polymer leaflet & stent design
• Potential for significantly better durability for low-risk TAVR patients
• Design goal - lower profile crimped valve and delivery system
TAVR - Proprietary Design

- Self-expanding nitinol frame - supra annular leaflets
- Maintains coronary access
- Controlled deployment - resheathable
- Sealing skirt – 10mm

Bench Testing:
- Accelerated wear: ~100 million cycles
- 27mm valve
- Mean gradient: 3.6mmHg
- EOA: 2.9cm²
Acute Animal Feasibility

- Implanted in aortic position to acutely assess in-vivo performance
- Delivered via ascending aorta, on-pump procedure

Deployment

Confirmation of proper placement & leaflet function
Acute Animal Feasibility

- Fully functioning valve under in-vivo conditions
Summary

- New polymer technology engineered to potentially last a patient’s lifetime
- Eliminates all animal tissue constraints
- Larger EOA for better hemodynamics
- Lower profile & more durable TAVR goal

2019 Milestones

- Met FDA requirements Aortic EFS approval
- Successful first-in-human experience in Aortic EFS
- Successful TAVR animal proof of concept